
CHAPTER 3

Statistics

1. Introduction

In statistics we are faced with data, which could be measurements in an experiment,
responses in a survey etc. There will be some randomness, which may be inherent in the
problem or due to errors in measurement etc. The problem in statistics is to make various
kinds of inferences about the underlying distribution, from realizations of the random vari-
ables. We shall consider a few basic types of problems encountered in statistics. We shall
mostly deal with examples, but sufficiently many that the general ideas should become
clear too. It may be remarked that we stay with the simplest “textbook type problems”
but we shall also see some real data. Unfortunately we shall not touch upon the problems
of current interest, which typically involve very huge data sets etc. Here are the kinds of
problems we study.

General setting: We shall have data (measurements perhaps), usually of the form X1, . . . ,Xn
which are realizations of independent random variables from a common distribution. The
underlying distribution is not known. In the problems we consider, typically the distribu-
tion is known, except for the values of a few parameters. Thus, we may write the data as
X1, . . . ,Xn i.i.d. fθ(x) where fθ(x) is a pdf or pmf for each value of the parameter(s) θ.
For example, the density could be of N(µ,σ2) (two unknown parameters µ and σ2) or of
Pois(λ) (one unknown parameter λ).

(1) Estimation: Here, the question is to guess the value of the unknown θ from the sample
X1, . . . ,Xn. For example, if Xi are i.i.d. from Ber(p) distribution (p is unknown), then a
reasonable guess for θ would be the sample mean Xn (an estimator). Is this the only one?
Is it the “best” one? Such questions are addressed in estimation.

(2) Confidence intervals: Here again the problem is of estimating the value of a parameter,
but instead of giving one value as a guess, we instead give an interval and quantify how
sure we are that the interval will contain the unknown parameter. For example, a coin with
unknown probability p of turning up head, is tossed n times. Then, a confidence interval
for p could be of the form [Xn− 3√

n

√
Xn(1−Xn),Xn +− 3√

n

√
Xn(1−Xn)] where Xn is

the proportion of heads in n tosses. The reason for such an interval will come later. It
turns out that if n is large, one can say that with probability 0.99 (“confidence level”), this
interval will contain the true value of the parameter.

(3) Hypothesis testing: In this type of problem we are required to decide between two
competing choices (“hypotheses”). For example, it is claimed that one batch of students is
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68 3. STATISTICS

better than a second batch of students in mathematics. One way to check this is to give the
same exam to students in both exams and record the scores. Based on the scores, we have
to decide whether the first batch is better than the second (one hypothesis) or whether there
is not much difference between the two (the other hypothesis). One can imagine that this
can be done by comparing the sample means etc., but that will come later.

A good analogy for testing problems is from law, where the judge has to decide
whether an accused is guilty or not guilty. Evidence presented by lawyers take the role
of data (but of course one does not really compute any probabilities quantitatively here!).

(4) Regression: Consider two measurements, such as height and weight. It is reasonable to
say that weight and height are positively correlated (if the height is larger, the weight tends
to be larger too), but is there a more quantitative relationship? Can we predict the weight
(roughly) from the height? One could try to see if a linear function fits: wt. = a ht. + b
for some a,b. Or perhaps a more complicated fit such as wt. = a ht. + b ht.2 + c, etc. To
see if this is a good fit, and to know what values of a,b,c to take, we need data. Thus, the
problem is that we have some data (Hi,Wi), i = 1,2, . . . ,n, and based on this data we try to
find the best linear fit (or the best quadratic fit) etc.

As another example, consider the approximate law that the resistivity of a material
is proportional to the temperature. What is the constant of proportionality (for a given
material). Here we have a law that says R = aT where a is not known. By taking many
measurements at various temperatures we get data (Ti,Ri), i = 1,2, . . . ,n. From this we
must find the best possible a (if all the data points were to lie on a line y = ax, there would
be no problem. In reality they never will, and that is why the choice is an issue!).

2. Estimation problems

Consider the following examples.
(1) A coin has an unknown probability p of turning up head. We wish to determine

the value of p. For this, we toss the coin 100 times and observe the outcomes.
How to give a guess for the value of p based on the data?

(2) A factory manufacture light bulbs whose lifetimes may be assumed to be expo-
nential random variables with a mean life-time µ. We take a sample of 50 bulbs
at random and measure their life-times X1, . . . ,X50. Based on this data, how can
we present a reasonable guess for µ? We may want to do this so that the specifi-
cations can be printed on the product when sold.

(3) Can we guess the average height µ of all people in India by taking a random
sample of 100 people and measuring their heights?

In such questions, there is an unknown parameter µ (there could be more than one unknown
parameter too) whose value we are trying to guess based on the data. The data consists
of i.i.d. random variables from a family of distributions. We assume that the family of
distributions is known and the only unknown is (are) the value of the parameter(s). Rather
than present the ideas in abstract let us see a few examples.

Example 155. Let X1, . . . ,Xn be i.i.d. random variables with Exponential density fµ(x) =
1
µ e−x/µ (fro x > 0) where the value of µ > 0 is unknown. How to estimate it using the data
X = (X1, . . . ,Xn)?

This is the framework in which we would study the second example above, namely
the lie-time distribution of light bulbs. Observe that we have parameterized the exponen-
tial family of distributions differently from usual. We could equivalently have considered
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gλ(x) = λe−λx but the interest is then in estimating 1/λ (which is the expected value) rather
than λ. Here are two methods.

Method of moments: We observe that µ = Eµ[X1], the mean of the distribution (also called
population mean). Hence it seems reasonable to take the sample mean Xn as an estimate.
On second thought, we realize that Eµ[X2

1 ] = 2µ2 and hence µ =
√

1
2 Eµ[X2

1 ]. Therefore it

also seems reasonable to take the corresponding sample quantity, Tn :=
√

1
2n (X2

1 + . . .+X2
n )

as an estimate for µ. One can go further and write µ in various ways as µ =
√

Varµ(X1),

µ = 3
√

1
6 Eµ[X3

1 ] etc. Each such expression motivates an estimate, just by substituting sam-
ple moments for population moments.

This is called estimating by the method of moments because we are equating the sam-
ple moments to population moments to obtain the estimate.

We can also use other features of the distribution, such as quantiles (we may call
this the “method of quantiles”). In other words, obtain estimates by equating the sample
quantiles to population quantiles. For example, the median of X1 is µ log2, hence a rea-
sonable estimate for µ is Mn/ log2, where Mn is a sample median. Alternately, the 25%
quantile of Exponential(1/µ) distribution is µ log(4/3) and hence another estimate for µ is
Qn/ log(4/3) where Qn is a 25% sample quantile.

Maximum likelihood method: The joint density of X1, . . . ,Xn is

gµ(x1, . . . ,xn) = µ−ne−µ(x1+...+xn) if all xi > 0

(since Xi are independent, the joint density is a product). We evaluate the joint density at
the observed data values. This is called the likelihood function. In other words, define,

LX (µ) := µ−ne−
1
µ ∑n

i=1 Xi .

Two points: This is the joint density of X1, . . . ,Xn, evaluated at the observed data. Further,
we like to think of it as a function of µ with X := (X1, . . . ,Xn) being fixed.

When µ is the actual value, then LX (µ) is the “likelihood” of seeing the data that we
have actually observed. The maximum likelihood estimate is that value of µ that maximizes
the likelihood function. In our case, by differentiating and setting equal to zero we get,

0 =
d

dµ
LX (µ) =−nµ−n−1e−

1
µ ∑n

i=1 Xi +µ−n

(
1
µ2

n

∑
i=1

Xi

)
e−

1
µ ∑n

i=1 Xi

which is satisfied when µ = 1
n ∑n

i=1 Xi = Xn. To distinguish this from the true value of µ
which is unknown, it is customary to put a hat on the leter µ. We write µ̂MLE = Xn. We
should really verify whether L(µ) is maximized or minimized (or neither) at this point, but
we leave it to you to do the checking (eg., by looking at the second derivative).

Let us see the same methods at work in two more examples.

Example 156. Let X1, . . . ,Xn be i.i.d. Ber(p) random variables where the value of p is
unknown. How to estimate it using the data X = (X1, . . . ,Xn)?

Method of moments: We observe that p = Ep[X1], the mean of the distribution (also called
population mean). Hence, a method of moments estimator would be the sample mean Xn.
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In this case, Ep[X2
1 ] = p again but we don’t get any new estimate because X2

k = Xk (as Xk
is 0 or 1)

Maximum likelihood method: Now we have a probability mass function instead of den-
sity. The joint pmf of of X1, . . . ,Xn is fp(x1, . . . ,xn = p∑n

i=1 xi(1− p)n−∑n
i=1 xi when each xi

is 0 or 1. The likelihood function is

LX (p) := p∑n
i=1 xi(1− p)n−∑n

i=1 xi = pnXn(1− p)n(1−Xn).

We need to find the value of p that maximizes LX (p). Here is a trick that almost always
simplifies calculations (try it in the previous example too!). Instead of maximizing LX (p),
maximize !X (p) = logLX (p) (called the log-likelihood function). Since “log” is an increas-
ing function, the maximizer will remain the same. In our case,

!X (p) = Xn log p+n(1−Xn) log(1− p).

Differentiating and setting equal to 0, we get p̂MLE = Xn. Again the sample mean is the
maximum likelihood estimate.

A last example.

Example 157. Consider the two-parameter Laplace-density fθ,α(x) = 1
2α e−

|x−θ|
α for all

x ∈ R. Check that fθ,α is indeed a density for all θ ∈ R and α > 0.
Now suppose we have data X1, . . . ,Xn i.i.d. from fθ,α where we do not know the values

of θ and α. How to estimate the parameters?

Method of moments: We compute

Eθ,α[X1] =
1

2α

+∞Z

−∞

te−
|t−θ|

α dt =
1
2

+∞Z

−∞

(αs+θ)e−|s|ds = θ.

Eθ,α[X2
1 ] =

1
2α

+∞Z

−∞

t2e−
|t−θ|

α dt =
1
2

+∞Z

−∞

(αs+θ)2e−|s|ds = 2α2 +θ2.

Thus the variance is Varθ,α(X1) = 2α2. Based on this, we can take the method of moments
estimate to be θ̂n = Xn (sample mean) and α̂n = 1√

2
sn where s2

n = 1
n−1 ∑n

i=1(Xi−Xn)2. At
the moment the ideas of defining sample variance as s2

n may look strange and it might be
more natural to take Vn := 1

n ∑n
i=1(Xi−Xn)2 as an estimate for the population variance. As

we shall see later, s2
n has some desirable properties that Vn lacks. Whenever we say sample

variance, we mean s2
n, unless stated otherwise.

Maximum likelihood method: The likelihood function of the data is

LX (θ,α) =
n

∏
k=1

1
2α

exp
{
− |Xk−θ|

α

}
= 2−nα−n exp

{
−

n

∑
k=1

|Xk−θ|
α

}
.

The log-likelihood function is

!X (θ,α) = logL(θ,α) =−n log2−n logα− 1
α

n

∑
k=1

|Xk−θ|.
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We know that1 for fixed X1, . . . ,Xn, the value of ∑n
k=1 |Xk−θ| is minimized when θ = Mn,

the median of X1, . . . ,Xn (strictly speaking the median may have several choices, all of
them are equally good). Thus we fix θ̂ = Mn and then we maximize !(θ̂,α) over α by
differentiating. We get α̂ = 1

n ∑n
k=1 |Xk−θ| (the sample mean-absolute deviation about the

median). Thus the MLE of (θ,α) is (θ̂, α̂).

In homeworks and tutorials you will see several other estimation problems which we
list in the exercise below.

Exercise 158. Find an estimate for the unknown parameters by the method of moments
and the maximum likelihood method.

(1) X1, . . . ,Xn are i.i.d. N(µ,1). Estimate µ. How do your estimates change if the
distribution is N(µ,2)?

(2) X1, . . . ,Xn are i.i.d. N(0,σ2). Estimate σ2. How do your estimates change if the
distribution is N(7,σ2)?

(3) X1, . . . ,Xn are i.i.d. N(µ,σ2). Estimate µ and σ2.
[Note: The first case is when σ2 is known and µ is unknown. Then the known value of σ2

may be used to estimate µ. In the second case it is similar, now µ is known and σ2 is not
known. In the third case, both are unknown].

Exercise 159. X1, . . . ,Xn are i.i.d. Geo(p) Estimate µ = 1/p.

Exercise 160. X1, . . . ,Xn are i.i.d. Pois(λ) Estimate λ.

Exercise 161. X1, . . . ,Xn are i.i.d. Beta(a,b) Estimate a,b.

The following exercise is approachable by the same methods but requires you to think
a little.

Exercise 162. X1, . . . ,Xn are i.i.d. Uniform[a,b] Estimate a,b.

3. Properties of estimates

We have seen that there may be several competing estimates that can be used to es-
timate a parameter. How can one choose between these estimates? In this section we
present some properties that may be considered desirable in an estimator. However, having
these properties does not lead to an unambiguous choice of one estimate as the best for a
problem.

The setting: Let X1, . . . ,Xn be i.i.d random variables with a common density fθ(x). The
parameter θ is unknown and the goal is to estimate it. Let Tn be an estimator for θ, this just
means that Tn is a function of X1, . . . ,Xn (in words, if we have the data at hand, we should
be able to compute the value of Tn).

Bias: Define the bias of the estimator as biasTn(θ) := Eθ[Tn]−θ. If BiasTn(θ) = 0 for all
values of the parameter θ then we say that Tn is unbiased for θ. Here we write θ in the

1If you do not know here is an argument. Let x1 < x2 < .. . < xn be n distinct real numbers and let a ∈ R.
Rewrite ∑n

k=1 |xk−a| as (|x1−a|+ |xn−a|)+(|x2−a|+ |xn−1−a|)+ . . .. By triangle inequality, we see that

|x1−a|+ |xn−a|≥ xn− x1, |x2−a|+ |xn−1−a|≥ xn−1− x2, |x3−a|+ |xn−2−a|≥ xn−2− x3 . . . .

Further the first inequality is an equality if and only if x1 ≤ a≤ xn, the second inequality is an equality if and only
if x2 ≤ a≤ xn−1 etc. In particular, if a is a median, then all these inequalities become equalities and shows that a
median minimizes the given sum.
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subscript of Eθ to remind ourself that in computing the expectation we use the density fθ.
However we shall often omit the subscript for simplicity.

Mean-squared error: The mean squared error of Tn is defined as m.s.e.Tn(θ) = Eθ[(Tn−
θ)2]. This is a function of θ. Smaller it is, better our estimate.

In computing mean squared error, it is useful to observe the formula

m.s.e.Tn(θ) = VarTn(θ)+(BiasTn(θ))2 .

To prove this, consider and random variable Y with mean µ and observe that for any real
number a we have

E[(Y −a)2] = E[(Y −µ+µ−a)2] = E[(Y −µ)2]+ (µ−a)2 +2(µ−a)E[Y −µ]

= E[(Y −µ)2]+ (µ−a)2 = Var(Y )+(µ−a)2.

Use this identity with Tn in place of Y and θ in place of a.

Example 163. Let X1, . . . ,Xn be i.i.d. N(µ,σ2). Let Vn = 1
n ∑n

k=1(Xk−Xn)2 be an estimate
for σ2. By expanding the squares we get

Vn = X2
n +

1
n

n

∑
k=1

X2
k −

2
n

Xn

n

∑
k=1

Xk =

(
1
n

n

∑
k=1

X2
k

)
−X2

n.

It is given that E[Xk] = µ and Var(Xk) = σ2. Hence E[X2
k ] = µ2 +σ2. We have seen before

that Var(Xn) = σ2 and E[Xn] = µ. Hence E[X2
n] = µ2 + σ2

n . Putting all this together, we get

E [Vn] =

(
1
n

n

∑
k=1

µ2 +σ2

)
−

(
µ2 +

σ2

n

)
=

n−1
n

σ2.

Thus, the bias of Vn is n−1
n σ2−σ2 =− 1

n σ2.

Example 164. For the same setting as the previous example, suppose Wn = 1
n ∑n

k=1(Xk−
µ)2. Then it is easy to see that E[Wn] = σ2. Can we say that Wn is an unbiased estimate for
σ2? There is a hitch!

If the value of µ is unknown, then Wn is not an estimate (cannot compute it using
X1, . . . ,Xn!). However if µ is known, then it is an unbiased estimate. For example, if we
knew that µ = 0, then Wn = 1

n ∑n
k=1 X2

k is an unbiased estimate for σ2.
When µ is unknown, we define s2

n = 1
n−1 ∑n

k=1(Xk −Xn)2. Clearly s2
n = n

n−1Vn and
hence E[s2

n] =
n

n−1 E[Vn] = σ2. Thus, s2
n is an unbiased estimate for σ2. Note that s2

n depends
only on the data and hence it is an estimate, whether µ is known or unknown.

All the remarks in the above two examples apply for any distribution, i.e.,
(1) The sample mean is unbiased for the population mean.
(2) The sample variance s2

n = 1
n−1 ∑n

k=1(Xk − Xn)2 is unbiased for the population
variance. But Vn = 1

n ∑n
k=1(Xk−Xn)2 is not, in fact E[Vn] = n−1

n σ2.
It appears that s2

n is better, but the following remark says that one should be cautious in
making such a statement.

Remark 165. In case of N(µ,σ2) data, it turns out that although s2
n is unbiased and Vn

is biased, the mean squared error of Vn is smaller! Further Vn is the maximum likelihood
estimate of σ2! Overall, unbiasedness is not so important as having smaller mean squared
error, but for estimating variance (when the mean is not known), we always use s2

n. The
computation of the m.s.e is a bit tedious, so we skip it here.
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Example 166. Let X1, . . . ,Xn be i.i.d. Ber(p). Then Xn is an estimate for p. It is unbiased
since E[Xn] = p. Hence, the m.s.e of Xn is just the variance which is equal to p(1− p)/n.

A puzzle: A coin C1 has probability p of turning up head and a coin C2 has probability
2p of turning up head. All we know is that 0 < p < 1

2 . You are given 20 tosses. You can
choose all tosses from C1 or all tosses from C2 or some tosses from each (the total is 20).
If the objective is to estimate p, what do you do?

Solution: If we choose to have all n = 20 tosses from C1, then we get X1, . . . ,Xn that
are i.i.d. Ber(p). An estimate for p is Xn which is unbiased and hence MSEXn

(p) =
Var(Xn) = p(1− p)/n. On the other hand if we choose to have all 20 tosses from C2, then
we get Y1, . . . ,Yn that are i.i.d. Ber(2p). The estimate for p is now Y n/2 which is also
unbiased and has MSEY n/2(p) = Var(Y n) = 2p(1− 2p)/4 = p(1− 2p)/2. It is not hard
to see that for all p < 1/2, MSEY n/2(p) < MSEXn

(p) and hence choosing C2 is better, at
least by mean-squared criterion! It can be checked that if we choose to have k tosses from
C1 and the rest from C2, the MSE of the corresponding estimate will be between the two
MSEs found above and hence not better than Y n/2.

Another puzzle: A factory produces light bulbs having an exponential distribution with
mean µ. Another factory produces light bulbs having an exponential distribution with mean
2µ. Your goal is to estimate µ. You are allowed to choose a total of 50 light bulbs (all from
the first or all from the second or some from each factory). What do you do?

Solution: If we pick all n = 50 bulbs from the first factory, we see X1, . . . ,Xn i.i.d. Exp(1/µ).
The estimate for µ is Xn which has MSEXn

(µ) = Var(Xn) = µ2/n. If we choose all bulbs
from factory 2 we get Y1, . . . ,Yn i.i.d. Exp(1/2µ). The estimate for µ is Y n/2. But
MSEY n/2(µ) = Var(Y n/2) = (2µ)2/4n = µ2/n. The two mean-squared errors are exactly
the same!

Probabilistic thinking: Is there any calculation-free explanation why the answers to the
two puzzles are as above? Yes, and it is illustrative of what may be called probabilistic
thinking. Take the second puzzle. Why are the two estimates same by mean-squared
error? Is one better by some other criterion?

Recall that if X ∼ Exp(1/µ) then X/2 ∼ Exp(1/2µ) and vice versa. Therefore, if we
have data from Exp(1/µ) distribution, then we can divided all the numbers by 2 and convert
it into data from Exp(1/2µ) distribution. Conversely if we have data from Exp(1/2µ)
distribution, then we can convert it into data from Exp(1/µ) distribution by multiplying
each number by 2. Hence there should be no advantage in choosing either factory. We
leave it for you to think in analogous ways why in the first puzzle C2 is better than C1.

4. Confidence intervals

So far, in estimating of an unknown parameter, we give a single number as our guess
for the known parameter. It would be better to give an interval and say with what confi-
dence we expect the true parameter to lie within it. As a very simple example, suppose
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we have one random variable X with N(µ,1) distribution. How do we estimate µ? Sup-
pose the observed value of X is 2.7. Going by any method, the guess for µ would be 2.7
itself. But of course µ is not equal to X , so we would like to give an interval in which
µ lies. How about [X − 1,X + 1]? Or [X − 2,X + 2]? Using normal tables, we see that
P(X − 1 < µ < X + 1) = P(−1 < (X − µ) < 1) = P(−1 < Z < 1) ≈ 0.68 and similarly
P(X − 2 < µ < X + 2) ≈ 0.95. Thus, by making the interval longer we can be more con-
fident that the true parameter lies within. But the accuracy of our statement goes down
(if you want to know the average height of people in India, and the answer you give is
“between 100cm and 200cm”, it is very probably correct, but of little use!). The proba-
bility with which our CI contains the unknown parameter is called the level of confidence.
Usually we fix the level of confidence, say as 0.90 and find an interval as short as possible
but subject to the condition that it should have a confidence level of 0.90.

In this section we consider the problem of confidence intervals in Normal population.
In the next we see a few other examples.

The setting: Let X1, . . . ,Xn be i.i.d. N(µ,σ2) random variables. We consider four situa-
tions.

(1) Confidence interval for µ when σ2 is known.
(2) Confidence interval for σ2 when µ is known.
(3) Confidence interval for µ when σ2 is unknown.
(4) Confidence interval for σ2 when µ is unknown.

A starting point in finding a confidence interval for a parameter is to first start with
an estimate for the parameter. For example, in finding a CI for µ, we may start with Xn
and enlarge it to an interval [Xn− a,Xn + a]. Similarly, in finding a CI for σ2 we use the
estimate s2

n = 1
n−1 ∑n

i=1(Xi−Xn)2 if µ is unknown and Wn = 1
n ∑n

i=1(Xi−µ)2 if the value of
µ is known.

4.1. Estimating µ when σ2 is known. We look for a confidence interval of the form
In = [Xn−a,Xn +a]. Then,

P(In # µ) = P
(
−a≤ Xn−µ≤ a

)
= P

(
−a
√

n
σ

≤
√

n(Xn−µ)
σ

≤ a
√

n
σ

)

Now we use two facts about normal distribution that we have seen before.
(1) If Y ∼ N(µ,σ2) then aX +b∼ N(aµ+b,a2σ2).
(2) If Y1 ∼N(µ,σ2) and Y2 ∼N(ν,τ2) and they are independent, then X +Y ∼N(µ+

ν,σ2 + τ2).

Consequently, Xn ∼ N(0,σ2/n) and
√

n(Xn−µ)
σ ∼ N(0,1). Therefore,

P(In # µ) = P(−a
√

n
σ

≤ Z ≤−a
√

n
σ

)

where Z ∼ N(0,1). Fix any 0 < α < 1 and denote by zα the number such that P(Z >
zα) = α (in other words, zα is the (1−α)-quantile of the standard normal distribution). For
example, from normal tables we find that z0.05 ≈ 1.65 and z0.005 ≈ 2.58 etc.

If we set a = zα/2σ/
√

n, we get

P
([

Xn−
σ√
n

zα/2,Xn +
σ√
n

zα/2

]
# µ

)
= 1−α.

This is our confidence interval.
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4.2. Estimating σ2 when µ is known. Since µ is known, we use Wn = 1
n ∑n

i=1(Xi−µ)2

to estimate σ2. Here is an exercise.

Exercise 167. Let Z1, . . . ,Zn be i.i.d. N(0,1) random variables. Then, Z2
1 + . . . + Z2

n ∼
Gamma(n/2,1/2).

Solution: For t > 0 we have

P{Z2
1 ≤ t} = P{−

√
t ≤ Z1 ≤

√
t} = 2

√
tZ

0

1√
2π

e−u2/2du =
1√
2π

tZ

0

e−s/2s−1/2ds.

Differentiate w.r.t t to see that the density of Z2
1 is h(t) = 1√

π e−t/2t−1/2
√

(1/2), which is
just the Gamma( 1

2 , 1
2 ) density.

Now, each Z2
k has the same Gamma( 1

2 , 1
2 ) density, and they are independent. Earlier

we have seen that when we add independent Gamma random variables with the same
scale parameter, the sum has a Gamma distribution with the same scale but whose shape
parameter is the sum of the shape parameters of the individual summands. Therefore, Z2

1 +
. . .+Z2

n has Gamma(n/2,1/2) distribution. This completes the solution to the exercise.

In statistics, the distribution Gamma(1/2,1/2) is usually called the chi-squared distri-
bution with n degrees of freedom. Let χ2

n (α) denote the 1−α quantile of this distribution.
Similarly, χ2

n (1−α) is the α quantile (i.e., the probability for the chi-squared random vari-
able to fall below χ2

n (1−α) is exactly α).
When Xi are i.i.d. N(µ,σ2), we know that (Xi−µ)/σ are i.i.d. N(0,1). Hence, by the

above fact, we see that
nWn

σ2 =
n

∑
i=1

(
Xi−µ

σ

)2

has chi-squared distribution with n degrees of freedom. Hence

P

{
nWn

χ2
n
(α

2
) ≤ σ2 ≤ nWn

χ2
n
(
1− α

2
)
}

= P
{

χ2
n

(
1− α

2

)
≤ nWn

σ2 ≤ χ2
n

(α
2

)}
= 1−α.

Thus,
[

ns2
n

χ2
n−1( α

2 ) , ns2
n

χ2
n−1(1− α

2 )

]
is a (1−α)-confidence interval for σ2.

An important result: Before going to the next two confidence interval problems, let us
try to understand the two examples already covered. In both cases, we came up with a
random variable (

√
n(Xn−µ)/σ and Wn/σ2, respectively) which involved the data and the

unknown parameter whose distributions we knew (standard normal and χ2
n, respectively)

and these distributions do not depend on any parameters. This is generally the key step
in any confidence interval problem. For the next two problems, we cannot use the same
two random variables as above as they depend on the other unknown parameter too (i.e.,√

n(Xn−µ)/σ uses σ which will be unknown and Wn/σ2 uses µ which will be unknown).
Hence, we need a new result that we state without proof.

Theorem 168. Let Z1, . . . ,Zn be i.i.d. N(µ,σ2) random variables. Let Zn and s2
n be the

sample mean and the sample variance, respectively. Then,

Zn ∼ N(µ,
σ2

n
),

(n−1)s2
n

σ2 ∼ χ2
n−1,

and the two are independent.
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This is not too hard to prove (a muscle-flexing exercise in change of variable formula)
but we skip the proof. Note two important features. First, the surprising independence
of the sample mean and the sample variance. Second, the sample variance (appropriately
scaled) has χ2 distribution, just like Wn in the previous example, but the degree of freedom
is reduced by 1. Now we use this theorem in computing confidence intervals.

4.3. Estimating σ2 when µ is unknown. The estimate s2
n must be used as Wn depends

on µ which is unknown. Theorem thm:indepofsamplemeanandvar tells us that (n−1)s2
n

σ2 ∼
χ2

n−1. Hence, by the same logic as before we get

P

{
(n−1)s2

n

χ2
n−1

(α
2
) ≤ σ2 ≤ (n−1)s2

n

χ2
n−1

(
1− α

2
)
}

= P
{

χ2
n−1

(
1− α

2

)
≤ (n−1)s2

n
σ2 ≤ χ2

n−1

(α
2

)}

= 1−α.

Thus,
[

(n−1)s2
n

χ2
n−1( α

2 ) , (n−1)s2
n

χ2
n−1(1− α

2 )

]
is a (1−α)-confidence interval for σ2.

If µ is known, we could use the earlier confidence interval using Wn, or simply ignore
the knowledge of µ and use the above confidence interval using s2

n. What is the difference?
The cost of ignoring the knowledge of µ is that the second confidence interval will be
typically larger, although for large n the difference is slight. On the other hand, if our
knowledge of µ was inaccurate, then the first confidence interval is invalid (we have no
idea what its level of confidence is!) which is more serious. In realistic situations it is
unlikely that we will know one of the parameters but not the other - hence, most often one
just uses the confidence interval based on s2

n.

4.4. Estimating µ when σ2 is unknown. The earlier confidence interval We look for
a confidence interval [Xn− σ√

n zα/2,Xn + σ√
n zα/2] cannot be used as we do not know the

value of σ.
A natural idea would be to use the estimate s2

n = 1
n−1 ∑n

i=1(Xi−Xn)2 in place of σ2.
However, recall that the earlier confidence interval (in particular, the cut-off values zα/2 in
the CI) was an outcome of the fact that

√
n(Xn−µ)

σ
∼ N(0,1).

Is it true if σ is replaced by sn? Actually no, but we have a different distribution called
Student’s t-distribution.

Exercise 169. Let Z ∼ N(0,1) and S2 ∼ χ2
n be independent. Then, the density of Z

S/
√

n is
given by

1√
n−1Beta( 1

2 , n−1
2 )

1
(

1+ t2

n−1

) n
2

for all t ∈ R. This is known as Student’s t-distribution.

The exact density of t-distribution is not important to remember, so the above exercise
is optional. The point is that it can be computed from the change of variable formula and
that by numerical integration its CDF can be tabulated.

How does this help us? From Theorem 168 we know that
√

n(Xn−µ)
σ ∼N(0,1), (n−1)s2

n
σ2 ∼

χ2
n−1, and the two are independent. Take these random variables in the above exercise to

conclude that
√

n(Xn−µ)
sn

has tn−1 distribution.
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The t-distribution is symmetric about zero (the density at t and at −t are the same).
Further, as the number of degrees of freedom goes to infinity, the t-density converges to
the standard normal density. What we need to know is that there are tables from which we
can read off specific quantiles of the distribution. In particular, by tn(α) we mean the 1−α
quantile of the t-distribution with n degrees of freedom. Then of course, the α quantile is
−tn(α).

Returning to the problem of the confidence interval, from the fact stated above, we see
that (use Tn to indicate a random variable having t-distribution with n degrees of freedom).

P
(

Xn−
sn√

n
tn−1

(α
2

)
≤ µ≤ Xn +

sn√
n

tn−1

(α
2

))

= P
(
−tn−1

(α
2

)
≤
√

n(Xn−µ)
sn

≤ tn−1

(α
2

))

= P
(
−tn−1

(α
2

)
≤ Tn−1 ≤ tn−1

(α
2

))

= 1−α.

Hence, our (1−α)-confidence interval is
[
Xn− sn√

ntn−1
(α

2
)
,Xn + sn√

ntn−1
(α

2
)]

.

Remark 170. We remarked earlier that as n→∞, the tn−1 density approaches the standard
normal density. Hence, tn−1(α) approaches zα for any α (this can be seen by looking at the
t-table for large degree of freedom). Therefore, when n is large, we may as well use

[
Xn−

sn√
n

zα/2,Xn +
sn√

n
zα/2

]
.

Strictly speaking the level of confidence is smaller than for the one with tn−1(α/2). How-
ever for n large the level of confidence is quite close to 1−α.

5. Confidence interval for the mean

Now suppose X1, . . . ,Xn are i.i.d. random variables from some distribution with mean
µ and variance σ2, both unknown. How can we construct a confidence interval for µ?

In case of normal distribution, recall that the (1−α)-CI that we gave was
[

Xn−
sn√

n
tn−1

(α
2

)
,Xn +

sn√
n

tn−1

(α
2

)]
or

[
Xn−

sn√
n

zα/2,Xn +
sn√

n
zα/2

]

Is this a valid confidence interval in general? The answer is “No” for both. If Xi are from
some general distribution then the distributions of

√
n(Xn− µ)/sn and

√
n(Xn− µ)/σ are

very complicated to find. Even if Xi come from binomial or exponential family, these dis-
tributions will depend on the parameters in a complex way (in particular, the distributions
are not free from the parameters, which is important in constructing confidence intervals).

But suppose n is large. Then the sample variance is close to population variance and
hence sn ≈ σ. Further, by CLT, we know that

√
n(Xn− µ)/σ has approximately N(0,1)

distribution. Hence, we see that

P
{
−zα/2 ≤

√
n(Xn−µ)

sn
≤ zα/2

}
≈Φ(zα/2)−Φ(−zα/2) = 1−α.

Consequently, we may say that

P
{

Xn−
sn√

n
zα/2 ≤ µ≤ Xn +

sn√
n

zα/2

}
≈ 1−α.
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Thus,
[
Xn− sn√

n zα/2,Xn + sn√
n zα/2

]
is an approximate (1−α)-confidence interval. Further,

when n is large, the difference between s2
n = 1

n−1 ∑n
i=1(Xi−Xn)2 and ŝ2

n := 1
n ∑n

i=1(Xi−Xn)2

is small (indeed, s2
n =(n/(n−1))ŝ2

n). Hence it is also okay to use
[
Xn− ŝn√

n zα/2,Xn + ŝn√
n zα/2

]

as an approximate (1−α)-confidence interval.

Example 171. Let X1, . . . ,Xn be i.i.d. Ber(p). Consider the problem of finding a confi-
dence interval for p. Since each Xi is 0 or 1, observe that

ŝ2
n =

1
n

n

∑
i=1

X2
i −X2

n = Xn− (Xn)2 = Xn(1−Xn).

Hence, an approximate (1−α)-CI for p is given by


Xn− zα/2

√
Xn(1−Xn)

n
,Xn + zα/2

√
Xn(1−Xn)

n



 .

6. Actual confidence by simulation

Suppose we have a candidate confidence interval whose confidence we do not know.
For example, let us take the confidence interval



Xn− zα/2

√
Xn(1−Xn)

n
,Xn + zα/2

√
Xn(1−Xn)

n



 .

for the parameter p of i.i.d. Ber(p) samples. We saw that for large n this has approximately
(1−α) confidence. But how large is large? One way to check this is by simulation. We
explain how.

Take p = 0.3 and n = 10. Simulate n = 10 independent Ber(p) random variables and
compute the confidence interval given above. Check whether it contains the true value of
p (i.e., 0.3) or not. Repeat this exercise 10000 times and see what proportion of times it
contains 0.3. That proportion is the true confidence, as opposed to 1−α (which is valid
only for large n). Repeat this experiment with n = 20, n = 30 etc. See how close the actual
confidence is to 1−α. Repeat this experiment with different value of p. The n you need to
get close to 1−α will depend on p (in particular, on how close p is to 1/2).

This was about checking the validity of a confidence interval that was specified. In a
real situation, it may be that we can only get n = 20 samples. Then what can we do? If we
have an idea of the approximate value of p, we can first simulate Ber(p) random numbers
on a computer. We compute the sample mean each time, and repeat 10000 times to get so
many values of the sample mean. Note that the histogram of these 10000 values tells us
(approximately) the actual distribution of Xn. Then we can find t (numerically) such that
[Xn− t,Xn + t] contains the true value of p in (1−α)-proportion of the 10000 trials. Then,
[Xn− t,Xn + t] is a (1−α)-CI for p. Alternately, we may try a CI of the form



Xn− t

√
Xn(1−Xn)

n
,Xn + t

√
Xn(1−Xn)

n



 .

where we choose t numerically to get (1−α) confidence.

Summary: The gist of this discussion is this. In the neatly worked out examples of the
previous sections, we got explicit confidence intervals. But we assumed that we knew the
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data came from N(µ,σ2) distribution. What if that is not quite right? What if it is not
any of the nicely studied distributions? The results also become invalid in such cases. For
large n, using law of large numbers and CLT we could overcome this issue. But for small
n? The point is that using simulations we can calculate probabilities, distributions, etc,
numerically and approximately. That is often better, since it is more robust to assumptions.


